WOC STEM Conference Recognizes FRCSW Employee

FRCSW acquisition program specialist Angela Ingram-Smith was recognized as one of four “Technology Rising Star” winners during the 2018 Women of Color (WOC) Sciences, Technologies, Engineering, and Mathematics (STEM) conference held in Detroit Oct. 11-14.

A Fleet Readiness Center Southwest (FRCSW) employee was honored during the 2018 Women of Color (WOC) Sciences, Technologies, Engineering, and Mathematics (STEM) conference Oct. 11-14 in Detroit.

Angela Ingram-Smith, an FRCSW acquisition program specialist, was one of four STEM “Technology Rising Star” winners. She received the award for her work within the command’s acquisition planning and procurement organization.

The WOC STEM conference is designed to help and provide women with methods to improve their career and educational goals.

Ingram-Smith began her career at FRCSW in 2012 as an administrative assistant for the Industrial and Logistics Maintenance Planning /Sustainment Department.

She transferred to her current position three years later.

Holding a bachelor’s degree in business management and certification (Level 1) from Naval Air Systems Command’s (NAVAIR) program management in acquisition, Ingram-Smith spends much of her time handling the service contracts and purchases vital to the command’s operations, and also provides training on the use of government credit cards.

Her desire to improve the efficiency of the command’s acquisition procedures led her to target unauthorized commitment/purchases (UAC).

“A UAC is when customers purchase items, supplies or services without authorization to first do so,” she said. “It was an ongoing issue; and because of the increase in numbers of UACs, we identified that we needed to put a process in place to address the issue.”

Personnel who bypass proper procedures for procuring supplies or services often experience prolonged wait times before their requests are resolved.

“The longest UAC to process has been over a year. I have one right now, a request for a service, that we identified in February 2017. It was just awarded this month, October 2018, as the vendor just signed off on the modification.”

“Had it been a properly authorized request for service, this could have been fulfilled in a few months,” she said.

Leading a team of six others, Ingram-Smith designed and created a software program which digitized the UAC process, which is in support of the NAVAIR/Commander, Fleet Readiness Centers Vision 2020 Acquisition Master Plan.

“It took us about six months of planning, and in that process, we decided to add three training classes for our customers,” she noted.

The digitized UAC contains folders of the required documents for procurement and services. Once complete the folders are routed from the originator to the originator’s supervisor for sign-off, and then through the remaining signature chain.

“The program is currently in use here, but we are still in the process of rolling it out and placing the program on SharePoint,” she said.

She added that the program has been shared with other commands, including FRCs East and Southeast.

“I don’t know where they are with the process, but my understanding is they like the program. Of course I don’t know how many unauthorized commitments they have, but they are using this as a model to adapt to their specific needs.”

The digitized UAC program is tentatively scheduled to be loaded onto SharePoint by mid-2019.


FRCSW Tube Shop Supports Vital Aircraft Systems

Sheet metal mechanic Ken Redman uses a computer numerically controlled tube bending machine to bend a one-inch titanium tube to be used on an F/A-18 Hornet.

Fuel and hydraulics are just two of the common systems found on all of the aircraft that are serviced by Fleet Readiness Center Southwest (FRCSW).

Ensuring the specifications and quality of the tubing used for delivering these and other systems, is the responsibility of the FRCSW tube and hose shop in Building 472.

Much of the work in the shop involves pressure/hydraulic testing and bending of tubes.

The shop uses computer numerically controlled (CNC) tube bending machines manufactured by Eaton Leonard to bend tubes made of aluminum, stainless steel and titanium.

Blueprint data which includes the tube’s overall diameter, thickness, and the bend angle is entered into the CNC which makes the calculations and bends the tube. Once entered, the information remains in the CNC and may be recalled for future use.

Another CNC device, the Vector Laservison tube data center, uses a laser to analyze samples and measure angles – to within one-half degree of tolerance – so tube data may be captured without blueprints.

The angle data retrieved by the laser is analyzed by the machines computer, which in turn, feeds the tube bending machine computers to produce the part.

“Just about all of the data for the F/A-18s has been scanned,” noted sheet metal mechanic Ken Redman, who operates the shop.

“But blueprints for the E-2/C-2 airframes, for the most part, are incomplete. Regardless, we have about 95 percent of those tubes already scanned in. Still, we occasionally need to take a sample (tube) off of an aircraft to scan it.”

Redman said that the Vector machine is also used for quality assurance and to ensure the accuracy of the other tube bending machines.

“When a tube is bent, there’s a degree of ‘spring-back’ to it. So after a tube is first bent, it will go to the Vector machine which plots the points of the bend and compares that against the data. The Vector will calculate the spring-back, make any corrections and send that information back to the bending machine for correction. So the next time that particular tube is made, the correct information will already be stored in the computer,” he said.

The CNC machines can bend tubes up to two inches in diameter, and as thin as 3/16 of an inch. Tube fittings/fasteners as high as two and one-half inches are also installed.

In addition to its fuel and hydraulic systems, Redman said that pressure testing of the tubes to an aircraft’s coolant and life and fire protection systems is also performed.

“When an aircraft is here for maintenance, I’ll get about seven or eight tubes at a time, and a week later, three or four and then it slows down,” he said.

“We now pressure test about 95 percent of the tubes at 6,000 psi, but with the Super Hornets, we need to go upward to about 21,000 psi,” he said.

To better handle the Super Hornets and prepare for future MV-22 Osprey workload, Redman said that the shop will add two new pressure/hydraulic test benches.

Certain Osprey tubes, he said, exceed 6,000 psi in pressure testing requirements.

Though that workload has yet to arrive, Redman said the shop remains busy with the existing F/A-18 and E-2/C-2 work.

“We usually average about 10-12 tubes a week, but we’ve started picking up UH-1 helicopters and have two orders equaling 300 hoses, and an order of 150 aluminum tubes,” he said.






FRCSW and NAVAIR Exploring Blockchain Technology

Vidal Nuno, work leader for the fuel cells installation shop in Building 94, opens a storage cage where ready-for-issue fuel cell parts are stored for legacy F/A-18 Hornets. A joint project by NAVAIR and FRCSW using blockchain technology will improve the efficiency of the distribution system for all parts within the naval aviation community.

Naval Air Systems Command (NAVAIR) is exploring the use of “blockchain” technology to help track aviation parts at maintenance facilities across the country.

Tracking parts from their origin and understanding the history of flight-critical aircraft parts is a resource consuming process that drives up the cost to operate military aircraft.

To increase efficiency and save money, the Navy is working to change the way it tracks the lineage of parts.

Currently, when parts are delivered they are tracked with pen and paper on scheduled removal component cards that get manually entered into a database.

Through the use of permissioned blockchain technology, the Naval Aviation Enterprise is working toward a 21st century solution to aircraft maintenance logistics.

Indiana Technology and Manufacturing Company (ITAMCO) are the developers of a blockchain product called “SIMBA Chain”.

SIMBA is a result of a Defense Advanced Research Project Agency (DARPA) Small Business Innovation project that looked into tracking secure messages using blockchain technology.

A Cooperative Research and Development Agreement (CRADA) allows Fleet Readiness Center Southwest’s (FRCSW) Advanced Technology and Innovation Team to partner with ITAMCO and bring this technological innovation to the Navy.

Additionally, the agreement with ITAMCO allows the Navy to gain access to cutting edge chain code as well as innovative protocols that can quickly and securely recall data; setting the stage for the Navy to use blockchain technology to deliver large amounts of data securely. The technology will be a useful tool set among Navy, DoD and external industry partners.

In addition to assisting the Navy in the use of these software tools, ITAMCO will gain an understanding of various facets of the Navy, as well as a better understanding of how the supply chain operates.

The goal of the CRADA is to develop a conceptual architecture for what a connected and transparent supply chain could look like.

A major hurdle to successful implementation is information assurance (IA). IA is the practice of assuring the safety of information and managing risks related to the use, processing, storage and transmission of data.

Using ITAMCOs accreditation for a distributed information system is a sizable departure from the centrally-controlled database design the DoD currently operates.

Though the ability to manage large data sets is not inherent to blockchain, the Navy plans to combine file access tracking and blockchain into a technology bundle that will provide the capability to manage critical aircraft part life events and allow for custody of these events on a distributed ledger electronically. This will permit the Navy to reap the benefits of a more efficient system.

When all of the nodes supporting a supply chain become connected it increases potential vulnerability, so special consideration must be given to cyber-security.

Bringing experts together early in the development phase provides a better understanding of the risks and rewards of a connected distribution system. This will allow for sound decision making in an effort to ensure any data transmitted is well protected.

The Navy already has a trusted network, so blockchain technology would loosely resemble public blockchains.

Public blockchains start with zero trust and rely on computation power in the “proof of work” consensus method.

The Navy model will be a permissioned chain with a consensus mechanism requiring less computing power. Conceptually developing consensus methods that maintain the integrity of the data while providing for all stake holders will be a collaborative effort.

FRCSW is excited to be in the middle of this collaboration. As a Maintenance Repair and Overhaul facility that currently manages relationships with much of the Naval Aviation Enterprise, the command is well positioned to assist the Navy in reducing costs and increasing efficiencies for maintenance programs across the country and around the world.

FRCSW School Qualifies Navy Welders

Aviation Structural Mechanic 2nd Class Chase Weishaupt practices a T-weld on two pieces of stainless steel during exercises in the FRCSW welding school in Building 4.
From repairing hitches on tow tractors to transition ducts in V-22 Osprey aircraft, many shipboard repairs in the fleet require the skills of a qualified welder.

For more than 40 years the Fleet Readiness Center Southwest (FRCSW) welding school in Building 4 has provided Sailors and Marines the instruction, knowledge and certification to handle any essential welding projects which may arise in theatre.

The two-month long course totals 320 hours of instruction and is taught by instructors Jason Rice and Alex Pimentel. Both are certified by the American Welding Society (AWS).

Rice has been a welder for 30 years, and Pimentel, a former Marine, is a 2012 graduate of the FRCSW welding school and became an instructor two years ago.

Rice said that classes are typically a mix of four Sailors and four Marines and students earn AWS certification upon graduation.

“We have students from Japan, Hawaii, Italy, just about everywhere,” he said. “The Sailors are either aviation structural mechanics or aviation support equipment technicians, and the Marines are usually welders or sheet metal mechanics.”

Students are taught welding of four different metals: aluminum, stainless steel, mild steel (wrought iron steel) and Inconel, an alloy made of nickel, chromium and iron.

“Inconel is an exotic metal and is used on aircraft exhaust,” Rice said. “It can get hot and cold many times and won’t crack and is corrosion resistant, as well.”

“One sheet of aluminum costs $150, while a sheet of Inconel is about $4,500, which is why it’s the last metal we weld because of the expense. But the students must learn to work with it because about 90 percent of the H-60s and H-53s helicopter exhausts are made this metal.”

Students are required to recertify their welding credentials yearly, either by retaking the course or submitting samples for analysis.

Instructors, as well, must recertify every five years.

The FRCSW school is one of three Naval Air Systems Command welding schools. The other two are on the East Coast.

FRCSW Teammate Develops Fixture to Improve Plating Process

Binh Huynh, work leader of the FRCSW plating shop, stands next to the spindle of a horizontal stabilizer used in legacy F/A-18 Hornets. Only the bottom, metallic appearing area of the spindle will be treated. The yellow and white areas on the spindle are wax, used to protect the remaining portions of the component.

About six months ago, Fleet Readiness Center Southwest (FRCSW) plating shop work leader Binh Huynh was faced with a question:

Could a landing gear piston be salvaged by plating its inside?

Working with engineering and manufacturing Huynh developed a fixture for chrome plating the inside of the piston, not only salvaging the component, but foregoing the approximate $100,000 replacement cost, as well.

The piston, or bottom cylinder, acts as the bottom portion of an aircraft’s shock struts where it is attached to the landing gear. The top cylinder is attached to the aircraft.

“We never had the capability of plating the inside diameter of the piston with chrome,” he said. “The inside is tricky, but the outside is easy. We tried it first on a dummy piston and it worked.”

Born in Saigon, Vietnam, the 44-year-old Huynh relocated to the United States at the age of 15 in 1988.

“My dad served with the south Vietnamese military and that’s how we came here, as refugees,” he said.

Having worked for the Boeing Co. for two years, and then six years operating a machining shop in West Covina established by his brother, Huynh developed the skills that qualified him to begin work as a contractor in the plating shop in 2012.

“I worked as a contractor for three years and then converted to a federal employee, and was promoted to the plating shop lead last year,” he said.

Located in Building 472, he oversees the shop’s 10 electroplaters who service the nose and main landing gear piston of the F-18 and E-2 Hawkeye C-2 Greyhound airframes.

All of the pistons are plated with chrome, cadmium and nickel.

“The pistons have approximately a four-inch diameter. We grind them to about 20,000th under size, then plate them and then they go to the machine shop for processing. It’s really like painting, except we use metals,” Huynh said.

The plating process is a lengthy one, requiring roughly 50 hours for the metallic application alone.

“At each process you have to bake them to release hydrogen which takes about 23 hours. And after you bake, you have to mask it because the piston is an L-shape and you only plate the barrel,” Huynh noted.

During his visit in late June Commander, Naval Air Systems Command Vice Adm. Dean Peters recognized Huynh’s innovation and the plating shop for its role in the landing gear overhaul and refurbishment program that marked its highest quarterly throughput of 20 landing gear in two years.

“We all have the same goal here, and that’s to support the fleet,” Huyhn said.

FRCSW Services E-2/C-2 Landing Gear

Aircraft mechanic Eric Fountain strips the nose landing gear of an E-2C Hawkeye to verify the components serial and part number.

The maximum gross take-off weight of the E-2 Hawkeye surveillance airframe and its sister C-2 Greyhound transport is more than 52,000 pounds. Combined with landings, perhaps no other part of the aircraft absorbs as much pressure as its landing gear.

Located in Building 472, the Fleet Readiness Center Southwest (FRCSW) landing gear shop is the sole FRC for overhauls and repairs to the Hawkeye and Greyhound nose and main landing gear.

“Landing gear are brought in for cause, like hard landings or fluid leakage, and now they are also brought in under aircrafts the planned maintenance interval (PMI) cycle,” said aircraft mechanic David Pearson.

“Whenever an aircraft (E-2/C-2) comes in from Building 460, they remove the landing gear and the drag braces and bring them here for either a repair or overhaul.”

Approximately seven years ago, the landing gear became part of the airframes PMI-2, a substantial disassembly of the aircraft which also includes removal of the wings, engines, and tail.

Landing gear are evaluated, reassembled and tested. Most are re-issued to the E-2/C-2 program in the Building 460 hangar.

Kits containing about 100 internal and external landing gear parts are used to streamline any overhaul process.

Pearson said that about 90 percent of all landing gear work is PMI, and of that, about 50 percent are repairs.

“For repairs we order the parts we need and reassemble the unit,” said aircraft mechanic Rupert Linberg. “Depending on the repair it usually takes a couple of weeks.”

Within the past three years, the landing gear shop increased its staff to 11 which includes contractor personnel.

Pearson noted that most of the repair and overhaul services to legacy F/A-18 and Super Hornet landing gear is done by private contractors and intermediate-level active duty personnel.

Meanwhile, the shop produced 20 landing gear last quarter, the highest throughput in the last two years.

“Our success is based upon the assistance we receive from our production control folks, engineering and quality assurance people and our supervisor,” Pearson said.




FRCSW Site Camp Pendleton Inducts Last AH-1W Super Cobra

Artisans at Fleet Readiness Center Southwest (FRCSW) Site Camp Pendleton marked the end of an era July 18 with the induction of the last AH-1W Super Cobra to undergo the Integrated Maintenance Program (IMP).

The H-1W is being retired and replaced with the newer H-1Z Cobra.

“The technology is more advanced in the Z than the W,” said Site Camp Pendleton manager Cary Mocanu. “It has better engines, and the airframe is more rigid and stronger. The W is primarily sheet metal where the Z is more cast aluminum parts.”

Manufactured by Bell Helicopter, the H-1W Cobra twin-engine attack helicopter was created for the Marines. For the past 32 years it has primarily been used in ground support missions and special operations.

The IMP was developed to keep the aircraft mission-ready by targeting the integrity of the airframe through two assessment events: Planned Maintenance Interval-one (PMI-1) and PMI-2.

Mocanu said that the H-1W PMI-1 occurs every 50 days at which time the aircraft are disassembled and evaluated.

Prior to PMI-1, the squadron removes the aircraft’s blades, and the site’s artisans remove the intermediate and tail gear boxes, panels, engines and the transmission and inspect those areas.

“The fuel cells and crew seats are removed and all of the oil, fuel and hydraulic systems hoses are also changed during PMI-1,” Mocanu said.

The H-1W PMI-2 cycle is held every 78 days with inspections similar to those of the PMI-1, except the aircraft are also stripped using a particle media blast (PMB) and painted.

The Site Camp Pendleton staff of approximately 40 artisans and 12 contractors have a paint and PMB facility which provides a faster return of aircraft to the squadrons.

Damages outside of the IMP scope are reported to the squadron and are ordinarily repaired as in-service repairs (ISR).

Mocanu said that H-1W ISRs averaged about 140 per year.

“A lot of those aircraft had the same discrepancies such as the transmission pylon channels, stub wing lugs, 214 bulkhead repairs, and landing gear supports. Many of these issues were the result of hard landings or fatigue to the airframe,” he said.

The H-1W IMP is scheduled for completion by the end of September when the aircraft will be returned to its squadron: Marine Light Helicopter Attack Squadron 775, 4th Marine Aircraft Wing.

Meanwhile, the artisans of Site Camp Pendleton will remain busy continuing IMP procedures to the H-1 Z and the UH-1Y Super Huey.

“We have plenty of work. We have Y and Zs coming up and should be putting out 40-50 aircraft a year within the next couple of years,” Mocanu said.

The last AH-1W Super Cobra helicopter to undergo the Integrated Maintenance Program (IMP) at FRCSW Site Camp Pendleton awaits further processing outside of the hangar. The aircraft was inducted July 18 from Marine Light Helicopter Attack Squadron 775 (HMLA-775), and is scheduled to complete the IMP by the end of September and return to the squadron.

New Vacuum Furnace Heats Up FRCSW LM2500 Engine Program

FRCSW teammates who were instrumental in the procurement, installation and acceptance of the Seco/Warwick Group furnace are, from left, materials engineers Michael Schutt and Jessica Porras, CIP project manager Martha Hoffman, metrology calibration Hung Pham, and material engineers David Arenas and Blake Whitmee.

Fleet Readiness Center Southwest’s (FRCSW) LM2500 engine program will get a bump in production thanks to the recent installation of a new vacuum furnace in Building 379.

The LM2500 turbine is used by the Navy to power Spruance and Kidd-class destroyers, Oliver Hazard Perry-class frigates, Ticonderoga-class cruisers, and Arleigh Burke-class destroyers.

The $1.9 million furnace will be used to “stress test” LM2500 parts. The unit can heat up to 2,800 degrees. After heating and the engine’s metallic components contract, technicians can look for any cracks or flaws and conduct further testing as needed.

It will not be used for the heat treating or plating of LM2500 parts.

Manufactured by the Seco/Warwick Group, the furnace was purchased via FRCSW’s Capital Investment Program (CIP) which invests in new technologies and equipment to improve production efficiencies.

“The furnace was custom made for our use and took almost a year to manufacture,” noted (CIP) project manager Martha Hoffman. “The equipment arrived May 15, and the sign off (acceptance) was July 2.”

The furnace chamber may accommodate components up to 60 inches in diameter and height. It is operated through a Program Logic Control (PLC) interface system that will log and archive events through date, time and duration. The console will also notify the operator if the unit is faulting and location of the fault.

“The PLC is user-friendly. The operator will input the amount of time and temperature for the heating process and if or when the part needs to be turned,” Hoffman said. “The computer will retain that information. So when another part comes in for treatment, the operator will just enter that part number or identifier and will be ready to go. This minimizes the room for error.”

The furnace operates under a chill water and closed-looped system.

“We have a secondary tank for the water and one for the argon (cooling). It’s all regulated by the PLC and the pump so the pressure is the same every time the furnace is used,” Hoffman said.

In addition to maintaining consistent pressure, other safety features include an automatic shut down if the unit exceeds a set temperature or if the argon level falls below a set threshold or its flow is interrupted, and railings and walkways with harnesses for fall protection.

In June, approximately 20 FRCSW personnel completed a 48-hour training session conducted by the manufacturer.

The new unit replaces a model that was more than 50-years old with a four-year history of sporadic operation. Difficulty in maintenance and increasingly obsolete replacement parts often resulted in a 60-80 percent down time, causing some LM2500 work to be contracted out.

Hoffman said that the new unit will save the command about six months in turn-around time per part vice contracted workload, and that 12-15 components will be tested weekly.

FRCSW is scheduled to overhaul about 15 LM2500 engines annually.

FRCSW Environmental and Safety Complete ISO, British Standard Audits

To ensure its procedures are the best possible in its environmental and safety programs, Fleet Readiness Center Southwest (FRCSW) recently completed an International Organization for Standardization (ISO) and British Standard (BS) audit, respectively.

The audits were conducted by Intertek, which issued certificates of registration on June 7.

The ISO 14001 is the standard specification FRCSW follows for its Environmental Management System (EMS). The Intertec audit was an upgrade from the ISO 14001:2004 standard to the ISO 14001:2015.

The BS Occupational Health and Safety Assessment Series 180001 (BS OHSAS 18001:2007) is the standard the command follows for its safety management systems (SMS).

FRCSW established its EMS in 1999 and registered to the ISO 14001 environmental standard that same year as part of its efforts to improve environmental performance on a continual basis. The move distinguished the command as the first federal facility to register to the ISO 14001.

“The EMS is required in a lot of Navy installations, but it is Commander, Fleet Readiness Centers (COMFRC) who is asking us to maintain our EMS to that 14001 standard,” said environmental engineer Shelli Craig.

She said that the 2015 standard requires continual improvement and that performance is measured and now reported to management.

To achieve the upgrade from the ISO 14001:2004 to the 2015 standard, auditors examined all work shifts comprising three years of data and looked for indications of continual improvement over that period. For the upgrade, the data had to indicate and prove that all of the elements of the standards that were previously set as goals were acquired.

“A big change between the 2004 and 2015 standard is now that top management owns the whole system. That includes the commanding and executive officers, the senior civilian and the executive steering committee. So, there’s a lot more buy-in at all levels within the organization,” Craig said.

Other changes reflected in the 2015 standard expands the EMS coverage and scope; requires interactions with external parties; and new documentation, legal compliance, and operational control requirements.

EMS extended staffing includes approximately 30 material management specialists with environmental collateral duties, 10 environmental reps, 17 members of the Environmental Program Office, and six chemical handlers who collect and dispose of hazardous waste.

The EMS oversees six different programs including air, water and pollution prevention. Four environmental protection specialists monitor the EMS in 20 command locations.

“Two of the four walk the entire site every morning on a daily basis,” Craig noted.

Craig said that a recent chemical spill that required the EMS to ensure corrective actions had taken place.

“Chemical handlers collect liquid waste from various parts of the plant and transport it in large tanks to the industrial waste water treatment plant run by contractors here,” she said. “We had a mishap that was contained, nothing escaped to the environment, but the contractors were also ISO-certified required by Naval Facilities Engineering Command (NAVFAC).”

“During the follow-up, I was told they would now lock off some of their connecting hoses so nobody could come to their site and offload waste without knowing about the waste profile. They are contracted for five other sites and made corrections there, as well.”

Craig said that the EMS was cited for one major and three minor discrepancies during the Intertec audit. A few opportunities for improvement (OFI), or recommended actions to prevent findings in the future were also noted.

“Our facility gets continued and repeated high marks for housekeeping,” she said.  “This is a hugely meaningful strength in that the corners are clean, no hazmat all over the place, trash and hazardous wastes are clearly labeled, marked and separated. Good housekeeping speaks to many overlapping areas and gives auditors a sense of a tight ship.”

The OHSAS 18001:2007

Like the ISO 14001:2015, COMFRC created an instruction directing FRCSW to follow the OHSAS 18001:2007 standard. From 2014 to 2016, the command has worked to meet the directive.

Certification and conformance to the OHSAS 18001:2007 is overseen by the command’s Safety Management System (SMS) which was formed in 2014.

The SMS operates under three primary components: An internal audit group which includes a second party auditor from National Technology Associates (NTA) for the evaluation of command spaces; an implementation team comprised of wage grade employees, managers, supervisors, and the same top management personnel who oversee the EMS; and a third party (Intertec) verification and registration to the standard.

The SMS established the criteria used in its internal audit.

“When we meet these criteria, we report up to COMFRC and advance through one of three levels. We’re currently at the Bronze level,” said occupational health and safety specialist Chris Gibson.

“We have about 30 people who manage various FRCSW buildings. They are called ‘champions.’ They meet with the safe site leads who are often wage grade employees that serve as shop safety representatives as a collateral duty to monitor the white communication boards throughout the plant that any employee can express their concern on to help clear any road blocks. And if the champion can’t clear it, he’ll go to the CO,” Gibson said.

Gibson noted that the CO holds a monthly SMS meeting which includes an open forum for wage grade artisans to express their issues and concerns.

A successful SMS or EMS rely upon employee compliance within their daily operations, he said, and that conformance to a standard cannot be achieved without it.

“There’s the specialists, managers and supervisors ensuring compliance. The conformance part comes in if the manager or supervisor is absent or transfers, and the employee acts as if they are still there getting that same message across every day.”

Intertec’s recertification visit consisted of five auditors for a day and a half who cited the SMS for one major and four minor discrepancies.

“I’ve updated some internal policies and procedures to address the findings,” Gibson said. “And also changed policies and procedures of how I interact with the second party auditor and that her actions within the FRC are consistent with what the third party (Intertec) is looking for on their visits. The others were routine like updating a form.”

“We needed to prove to them with audits, metrics, graphs and all documentation that we are doing exactly what we say we are going to do,” Gibson added.

Within three years, the SMS must transition from the BS OHSAS 18001:2007 to the ISO 45001.

Meanwhile, both the EMS and SMS are adapting to the ISO’s new Annex SL, a generic outline applicable to all management systems. With its 10 common clauses addressing issues that include operation, support and improvement, the annex is intended to increase consistency within management system structures.

The next Intertec audit for the EMS and SMS is scheduled for April 2019.

Occupational health and safety specialist Chris Gibson, center, inspects an automated external defibrillator in Building 249 as part of the FRCSW Safety Management System’s internal audit program while National Technology Associates auditor Jeanell Bausback and electrician Ruel Dionisio look on.